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ABSTRACT

In a practical treatment of exchange perturbation problems one seeks
the best wavefunction of the form Y(1) = A(¢O + ¢l) where A is a symmetry
projection operator, ¢0 is the eigenfunction of the unperturbed Hamil-

tonian, HO’ and ¢1 is the solution to a first order perturbation

i

equation of the form (HO-EO)dJl + (V—El)¢0 (l-—A)Fl . Most previous

v v v
T A, (o, + 7B, .
Vv, j 1] J JV)¢0
Here Vv labels the irreducible representation, j labels the row of

the representation. The choice of the constants va‘ and VBj depends

J

treatments correspond to assuming that Fl
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upon the particular methed. In this paper the function Fl is deter-

mined so that the resulting Y(l) 1is equal to the exact wavefunction
or any given function having the symmetry of A . It is hoped that
this analysis will suggest desirable functional forms for Fl to use

in practical problems. Attempts to determine ¢l by optimizing the

sum of the first and second order energies were not successful.



" There are a great many different theories of exchange.perturbations
(for reviews, see Refs. (1)-(6)) and most of them would give the exact
energy and wavefunction if the treatment were carried to an infinite
order. However, in practice, the calculations are sufficiently difficult

that the wavefunction is usually truncated after the first order (for

examples, see Refs, (7) and (8)). Unfortunately the different methods
give different values for the second order energy E2 and different
values for E(l) , the expectatidn value of the Hamiltonian correspond~
ing to the zeroth plus first order wavefunction. In the present paper

it is shown that the zeroth plus first order wavefunction obtained by
~optimizing the basic equation which is used in most exchange pertufbation
treatments is the exact wavefunction for the perturbed system and lE(l)
is the exact energy! On the other hand, there is no unique value of E2
since it can be made arbitrarily large or small. We hope that the equa-
tion which we use for determining the optimum first order function will
éerve as the basis for improving the techniques which can be used to
solve practical exchange perturbation problems.

The basic difficulty inherent in exchange perturbation problems is
that the_symmetry group* corresponding to the perturbed Hamilténian
%If»the Hamiltonian is spin—-free, then the energy eigenfunctions (which
we call wavefunctions in the present paper) are really the spin-free
components of the complete wavefunction. The construction of projection

operators to be used in the calculation of the spin-free components of

a complete wavefunction is discussed in Refs. (9)-(1l4).



. Schrodinger perturbation theory.

: bfﬂef”is\thén“if?(l)-gﬂA(¢O +%
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H = H0 + V is different from the symmetry group corresponding to the

"1'.1n'pei"‘i:'i.ni"b'éd'"He:u'niiton':i.éir'i.Y HO ." Thus, 'if A .1s'tﬁé‘idémpétent projection
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““operator corresponding to a particular irreducible representation (or

to’a particular row of this irreducible representation) of the symmetry

groﬁﬁ”éf'fhenﬁérfurbed'sYStem,‘theﬁ“ A commites with H but not with

"H. . “This iéadéjto the relation

0
AVHO—HOA=VA-AVU.“ W
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~ The right?hand—side of Eq. (1) .appears to be first order whereas the

left-hand-side appears to be zeroth order. Thus, the concept of order

_ is not clearly defined by the "powey of V" as in the ordinary Rayleigh-

(-

Egcbange.perturbation treatments start with a zeroth qrder
th;qdinggrhequation
» : (HO --EO)¢0 =0 : S (2)
Hefé Ed'”is ‘taken to be the zéroth order energy, but WO.= A ¢O » rather
than ¢d itself, is generally taken to be the zeroth order wavefunction.

We seek approximations to the exact enmergy E and the exact wavefunction

+ ¥'='AY ' of the perturbed system. Iu most exchange ‘perturbation treat-

h b e T e e y St L b e L e
ments, each ordér of the perturbed wavefunction has the symmetry of VY .

Thus, we seek a first order function ¢l such that the first order
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‘wavefunction i Wl = A ¢l . ' The wavefunction correct through the first
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“‘Three observations:

(a) 1If ¢f‘71svreplaced byﬂt ‘4¢l + (1-A)S.: where S is an
arbltrary functlon, ‘then E(l) remalns unchanged This is because
- (I\ w . PR P .
N (—- ; e ‘,u_vs/. E S

¢l occurs in Eq. (3) only in the form A¢l .

(b) If V is replaced by either V’ = V + (l—A)T or V" =V + T(1-4),

B 7 B ’. A hu ,"
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where T 1is an arbltrary function or operator, then E(l) remains un-

v
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changed . Similarly, HH .can be repleced by: either HO - (1-A)T or

HO—(JJ‘_A:) R S B S e

(c) 1If ¢ isAvariedwwithqut”constraintst, the: optimum (or
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stationary) value of E(lx Vil obtalned,when ¢ satisfies the equation

SR S wz ,,L
."T -

H - E(l))A(¢O + ¢l) =0 . In tHis ‘case it is clear that  Y(1)

Hand,E(l);EQEcnguchmaiprocedurevcorresponds;toxthennsualrvariatiOnal
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In the Appendix, Eq.. (3) is rewritten in an equivalent form-.and expanded

into terms which correspond.‘te theweogerent first, second, ... orders.
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It is then shown that the optimum expression for ¢. cannot be obtained

RN

z)'

1

“by varfiﬁg{M”$fdﬁ§5”é§ffo5méke”tﬁe“§hﬁ”of*tﬁé”first and second order
Lot PR S LT T : yoooyaee i Cesearhe praonn, oS R
‘energleS’ «S.tatllb Y' oarti [P EARRSEREIEE - T R KN IR EH)
i 2 palamouan Ly edy bas Y To swoarods conbyav ool
ThlS does not necessarlly mean that only the component of V  which
SEEC AmnalaAnS O STRS N tol ray 2id o ns Daesi Ao :
has the symmetry of A determlnes the value of E(l) For example, if
gna ol W3ed LE Lieseh nb o Roganonih susoon J'wﬁﬁjf’ i
(1/2)(1 -P), then 1t is the (l—A) component of V whlch enters into
o) ’JiUm’“ Lo pubwsaaos B ovol esooryslosine belladeh ssaapes
Eq. (3) since AVA¢ is équal to the product of (1-A)V tlmes Ad .
VESDTOSNT foaynTiie
o walhnogession ‘Hu bR ‘“J o oasolev adi asvig (S0 o
Excépt that it must satlsfy the same boundary and continuity condltlons
(o m43 do golzzooall dapevodi ooopeouks 510 LaIanares.d Snounlt
as are imposed upon acceptable Wavefunctlons.
wimmanry 3L LOBEA L2 Lu;‘“"""'”l'i ay wuroonime el Bovioval eoa e
i a0t - oady Yo lgaoy w43 nakvsgron JF ol smla




Most Rayleigh-Schrodinger type treatments are based upon rewriting

the perturbed Schrodinger equation in the form

(H-E)AY = A[(HO—EO) + (V—El) - E2 - ...](q>0 + ¢1 + ...) =0

(4)

This leads to a first order equation

(Hy = Eo, + (V- E Doy = (1-A)F, (5)

where F is an arbitrary function# and E is the constant which

1

makes Eq. (5) mathematically consistent,

<¢0|V¢o - (1-A)Fl>

1

E. = | (6)
< >
1 9,105
The various perturbation schemes differ in their choiceT of Fl . In
most of the schemes that have been proposed, Fl is taken++ to have the
form
I v Y v
F. = . A, (o, + "BV 7
1 v,j JJ( k| ] )% 2

Here the Vv labels the irreducible representation and .j labels the

row within that representation. The particular choice of the constants

+The various choices of F1 and the corresponding higher order functions

F2’ F3, ... which lead to the various perturbation schemes proposed in

the literature are discussed in detail in Ref. (15). This paper also

presents detailed calculations for H, comparing the results for the

2

different theories.

TTRef. (16) gives the values of vaj and ij corresponding to various

proposed treatments. It gives a thorough discussion of the symmetry
problems involved in exchange perturbations. Also, it presents accurate

calculations for H2 comparing the results for the different theories.
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vqj and »ijr varies from method to method., . Expediency is the only-
~justification for limitipg the choice -of .Ef in-.this manner. In the

present paper, we seek to optimize Fj -
Actually, we can show that if W(l) is an arbltrary given

function# having the symmetry W(l) AW(l) and E, 1is an arbltrary

Tl
given value, then it 1s always p0551ble to flnd a functlon Fl such

that Eq. (5) is satlsfled by the flrst order functlon,
SR M ¢o-+,y(l)f+ (1=AYG Tl weens (8)
Note that Eq. (8) is consistent-with*theirequiremEﬁt that Y(1) = A(qﬁO + ¢1)

so that W(l) can be con31dered to be the perturbed wavefunctlon

TN

. _ . . . ,
truncated after the flrst order. In Eq (8) AG, is any”functlonf
‘ such that
DO T PURAEE U TR AF1=,0 o T [T . ’ (9) :
if AF1)= dﬂ;'theﬁ Eq;v(S)”(making'hse ofTEq.‘(S))‘gives.the,identity
Ey = U-ED o + (Hy=E) [¥(1) +7(1-A)G). ©(10)
‘1Making’use'of‘Eq;‘(l),.the“Stateﬁent?that”;AFl‘= 0 can-be written in
.the: form - ..~ )
C R N N PRI & e . P » . -
; A v (l-A)G e (1)
o ; 3 TR v ot :rurrs [T A o

X = ‘(.v £ )¢0 + (HO Eo)wu) (12)

As will be shown below, for -a two partlcle system (or one contalnlng

g.[*.;"i b '( PRI TY T \r' IR S :\ it ‘.,.'.l st ‘L U mG Laar o aynte i l,

only gerade and ungerade symmetrles), Eq (;l) completelx_determines

Lo el .‘.uu I Gres e e



(1-A)G. For a perturbed system with three or more particles (or having
more than two symmetry elements), it is always possible to find a function
(1-A)G such that Eq. (1l1) is satisfied, but the solution often is not
unique. For such cases, AFl and A¢l are still uniquely determined

by the specification of Y¥(l) and El » but the functions Fl and

¢l are not uniquely specified.
The optimum function Fl would be determined by Egs. (10)-(12) in
which y(l) 1is taken to be the exact perturbed wavefunction V¥ . In

this case the E(1l) of Eq. (3) becomes the exact energy E .

EXAMPLE: The 82 Permutation Group

The simplest physical examples of exchange perturbations are the
interactions of a hydrogen atom with either another hydrogen atom or
else a proton. In either case, the symmetry group of the perturbed
system is the 82 permutation group having the elements 1 and P . This
group has two one dimensional irreducible representations, gerade (g)
and ungerade (u) . The corresponding projection operators are:

BA = (1/2)(1+P) and “a = (1/2) (1-P). It is convenient to let the super-

scirpt g or u designate the symmetry component of a function, for

example: By = gA V . For this 82 group, we must distinguish two cases:

1) The state under consideration has gerade symmetry so that A = A .
u.u

Since V = 8V + "V and since the product &vYc  is ungerade and "V G

is ge;ade, Eq. (11) has the unique solution,

(1-84)G = (1/%v)8x X (13)

Ya

2) The state under consideration has ungerade symmetry so that A =
Simi , 2.8 . uy8 .
imilarly, since ©°V®G is gerade and G 1is ungerade, Eq. (ll) pag

the unique solution
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(1-"A)G = (1/“v) X (14)
Ca Ceo P T e ot o T *<¢~\1\' L
If  V¥(l) is a’éivenﬂfunction and‘“El is a givenv;alue then F1 is
:-unlquely glvenihy Eq. (10)‘5&& w“¢§f lé’ﬁ%?qﬁély g1venfh§ B (8) .
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EXAMPLE ! TheASS Permutation Group o ’

o Fonbowrn oo on UV T motastaeswaars sl grliuhsg sdia

S 1 ;»?’.‘-?hf‘f‘?e of three dike particles, as f rn ?’,‘f‘“‘f_vl.‘? I the inter-

‘ actlon ot" H2 .w1th H ,:co.rrespond‘.s:(to{ut‘h_;:.‘E:é3 synnetiyl%roup hav1ng
six symmetry elements;. Its .three 1rredoc1ble representatlons correspond
i:;icl')'-'i:":he4YE:»\un'gi,d:'L~'é'a-:s‘gr’ams..‘‘~ i;'iJL ﬁianﬂ;}ﬁ (whtch we

l refer to as 1 2, and 3 respectively).f The prOJectors for the one

o dlnen51onal re£;esenta€;onsﬁl and 3 are’ A L ¥t ik
2 e et e S e b rgy a9
L *rsvx;1”; s .KLK63§QS;E£E2” <§ﬁ%g = HESPEREI L (16
. We 1nclude the.prOJector lA for the sake of completeness even though
PR AL N PR ST ) ’}.f‘,'}" (RN T f'ﬁ',:-" DLW “')5 3 ,‘f::“’.,_i st 'y PRSI I I S
a spatial wavefunctlon which transforms as -lA 1s.not_Pauli—allowed.
. The two dﬁnensional ;epresentattpn %?has the two projectors

(1/6)(2 + 2P, - P )

- P - P
IC (8% w0 kf;} T (L5 ;J;Jﬁiﬁ:;%Iﬁﬁmﬁ%a sm&z%o sﬁ%égnol'
- 3 # . : (17)
070D Ty atnenoquon sasbusqsbal wwel edy no pellsines say
= - 2P . + + Py = Proa = Puo)
Ay, = (1 /6)(2 2Py + Pyg >P23 P123 ﬁ;slev (18)

o Lo I
and the two shift operators

Y R B € o
i Fory o 4 S3 o p= i o Y 0 £ PRI
o i' Litrss ..v;J* ' .n)l Y ?”‘” }’:,E‘j DF.TF.B L[‘r thA J—,_‘;U T ,\)“, [T
.. “Here we are u51n the: conve enti . A e
ylewlonegany © & rﬁ’ §Ui=“m L B 1jk,zll NOte that.

in Gosc1nsk1 and Lowdln s Ref (13) notatlon,'the rows and columns are

interchanged.

- e me mm wm e e e e e = em am em



2, _ 1/2 _
Bpp = (WA T (By g = Pog + Pyog = Pygy) (19)
2. 1/2
Byy = (/1Y)77 "(Byg = Pyy = Pyyg + Pygp) (20)
The projector corresponding to the character of 2 is, of course,
2 =2 4 %A = (1/3) (2 =P, - P...) (21)
11 22 123~ “132

After reducing the representation of VG to its irreducible com-

ponents (and using the notation 2Aij V = 2Vij>’ the four symmetry
components of Eq. (1ll) are
1y = l/2[2G112V.11 + %ty + 2G222V22 + 2G122V12] +% % e
2X11 =1 2vll + 1/2[2G222v22 - 2G122V12] + 2G223V + 3 2v22 (23)
szz = e By, + l/2[2‘3112"22 ; 2G212V12] * 2G113V + % 2V11 (24)
3 = 16 v+ l/2[2G112V22 - 2Gélzvlz + 2G222V11 - 2G122V21] (25)

In addition, we obtain the equation corresponding to the character pro-
. 2
jector A

2e 1o 2y 43¢ Yy (26)

For each of the symmetry cases Eq. (22), or (23) or (24) or (25), provides

%
one condition on the four independent components of G (lG, 2Gll’ 2G

22°

* 2 _ 2 2 2 _2 2 2 2
Note that G21 = A21 Gll and G12 = A12 G22 so that G21 and G12

can be determined from a knowledge of 2G and 2G

11 respectively.

22



filence G énd (1—A)G canjbe chosen in an infinite number of ways.

On the other hand, if we used the character projector to express
the symmetry of the two dimensiopél representation, we would obtain
from Eq. (26) the unique solution for (1 - 2A)G ; corresponding to
wavefunctions which have the 2 symmetry,

Qa - 2A)G - % / 2y (27)

Thus, some simplification in the determination of (1-A)G and in fhe
equation (5) for the determination of ¢l may result from the use of
the character projector 2A . However, the wavefunction for the per-
turbed system has the symmetry corresponding to a particular row of the

irreducible representation. Thus, V¥(1) = 2All(kq)O + ¢l) or

¥(1) = 2A22(k¢o + ¢l) . As far as the equations for 1y and 3x are
concerned, no simplification results from tr&ing to use the 2A'projector.
For wavefunctions having either the 1 or the 3 symmetry, a particular
solution for (1-A)G results from choosing’zG11 and 2G22 to be zero

2

(hence 2G21 = G12 = 0) . In this case, Eqs. (22) and (25) give

A-*me=2%x/3% and @-30e=3%/% (28)

We believe that our analysis has shed a bit of light on the structure
of the exchange perturbation equétions. It remains to be seen how this

analysis will be used to develop bettervfunctioné F which will make

1

the practical solution of exchange perturbation problems easier or more

accurate.
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APPENDIX

An Attempt to Determine ¢, by Optimizing E, +E,

It is not easy to determine the various orders of perturbation

energy from Eq. (3). For example, thc opparent zeroth order energy

would seem to be
Eq 7 <bg AHGA ¢ > [ <y A ¢y> (A1)

instead of Ey- Thie difficulty - disappears if we rewrite Eq. (3) in
the form
GgAd H(1-A) 6 | (AHHA) +(AV4VA) [0 +A9, +(1-A)¢ , >

. EQ) = 2<95+6, TATo 6> (A2)

Here we are expressing the first order function- ¢1 as the sum °£.
its two components A¢1 and (1-A)¢l, which wan be varied separately.
In Eq. (3), the zeroth otrder operator (A§©'+3HGA) and the first

order operator (AV + VA) are still Hermitian. Howgver, we would have
obtained the same conclusions if we had used the non Hermitian zeroth
and first order operators AHO and AV (or equivalently, HOA and

VA) . Our conclusion is that we cannot obtain an optimum first order

function ¢1 by varying the sum of the first and second ordet eretgies.
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<95l 10g> =1

Expanding the right hand dide of Eq. (AZ)"ahd gfouping‘thé terns éccordf
ingvtovthe;r appgfgnt order of bercurbation, and 1dtting éac. denote

_the conjugate complex we obtain:
. i

_ . .
= E' N v TN
E, = E)+D, -3Bd | (A4)
Here gL is the usual Heitler-London first order emergy
HL _ 1 - . ‘
Ep =3 <tolav+ YA|¢0> @)

The additional first order energy term is
B, = l-is,qq} + (1—A)é ](a - EDAlp,> + c.c.) (46)
1 271 Aattae e Mo "

Thé'gecond order enmergy terms are

By = <Ay [y ~ B oy

(A7)
1 HL '
+5 [<Q + 8¢,V - E, " [ad,> + cuc.]
)= L@ -mglm, - E A, + (V- ETAG> + c.c.]
2" 7 [0 - DGilly — Ehsy + (V.= By IARy> + coc
?&nd'tbe'thi:d'term is - %-Bid where

d= b |A¢1> +ecoe. | o (a9)
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Although the function (l—A)cbl does not affect E(1l), by varying (1-A)¢l
values of E1 and E2 can be made arbitrarily large or small. This
follows from the fact that the expressions for El and E2 are linear
in (I—A)¢l .

We might still expect to obtain a good =xpression for ¢l by
varying A¢l (while holding (l-A)¢l constant) so as to make the sum of

El + E2 stationary. In order for the resulting equation to be mathe-

maticaisy consistent, B; must be equal to zero or E1 = E?L « The

resulting equatic for the first order function ¢; = A¢1 + (1-A) 4

(where the A¢l has been optimized while (l—A)cpl has been held fix=z=d) is

then

AL,

HL -
+ (8, - EO)A(¢1 + (1—@)%) + (V- E] dA%, = 0

If now Eq. (Al0) is multiplied by (1-A) and we make use of Eq. (1), we
obtain an equation of the form

(1~A)(Ho - EO)AY = 0 (A1l)

where Y = ¢l - d¢0 . Again, making use of Eq. (1), Eq. (All) can be

expressed in the form

. (AV = VA)AY = 0 (A12)

However, the basic premise in perturbation theory is that V does not

commute with A , so Eq. (Al2) can be true only if AY = 0 . Thus,

A¢l = d A¢0 . (A13)
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Multiplying Eq. (Al3) by ¢3 s integrating and remembering ;he defini—
tidn of d, we see that d = 0 and so 'A¢l = 0 .. Thus, we conclude
_that Eq. (A10) does not have a (useful) solution. As a result, QeA
cannot obtain an optimum first order function ¢l by making use of

Eqs. (A3) and (A4) for the first and second order energies.

REFERENCES
1. J. 0. Hirschfelder, Chem. Phys. Lett. 1, 325 and 363 (1967).
2. P.-0. Lowdin, Intern. J. Quantum Chem. 2, 867 (1968) and 25, 137

(1968); and Advan. Chem. Phys. 14, 283 (1969).

3. H. N. W. Kekkerkerker and W. G. Laidlaw, J. Chem. Phys. 52, 2953 (1970).

4. A. T. Amos, Chem. Phys. Lett. 5, 587 (1970).

5. P. R. Certain and J. 0. Hirschfelder, J. Chem. Phys. 52, 5977 and 5992

(1970); J. 0. Hirschfelder, Intern. J. Quantum Chem. 4, 257 (1971).
6. F. A. Matsen and B. R.'Junker, J. Phys; Chem. 75, 1878 (1971).
7. P. R. Certain, J. O. Hirséﬁfelder, W. Kolos and L. Wolniewicz;
J. Chem. Phys. 49, 24 (1968); J. O. Hirschfelder and P. R. Certain,
Intern. J. Quantum Chem. 2S5, 125 (1968).
8. L. Piela, Intern.- J. Quantum Cheri. 5, 85 (1971).
9. D. F. Johnston, Rept. Progr. Phyé..gg, 66 (1960).

10. M. Hamermesh, Group Theory (Addigon-Wesley, Reading, Mass., 1962).

11. F. A. Matsen, Advan. Quantum Chem. 1, 59 (1964).

12, A, J. Coleman,bAdVan. Quantum Chem. 4, 183 (1970).
13. P.—O..ngdin and 0. Goscinski, Intern. J. Quantum Chem 3S, 533 (1970).
14, J. I. Musher, J. De Physique 31, Colloquium C4 [Supplement to #11-12],

p. 51 (1970).



15.

16.

14

D. M. Chipman, University of Wisconsin Theoretical Chemistry Institute
Report No. WIS-TCI-459 (1971), Doctoral Dissertation.
J. D. Bowman, Jr., University of Wisconsin Theoretical Chemistry

Institute Report No. WIS-TCI-463 (1971), Doctoral Dissertation.



